blob: 3fd86b71ee379e6e4d9b53e0634bea6f37d3be99 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* arch/arm64/kvm/fpsimd.c: Guest/host FPSIMD context coordination helpers
*
* Copyright 2018 Arm Limited
* Author: Dave Martin <Dave.Martin@arm.com>
*/
#include <linux/irqflags.h>
#include <linux/sched.h>
#include <linux/kvm_host.h>
#include <asm/fpsimd.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/sysreg.h>
void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu)
{
struct task_struct *p = vcpu->arch.parent_task;
struct user_fpsimd_state *fpsimd;
if (!is_protected_kvm_enabled() || !p)
return;
fpsimd = &p->thread.uw.fpsimd_state;
kvm_unshare_hyp(fpsimd, fpsimd + 1);
put_task_struct(p);
}
/*
* Called on entry to KVM_RUN unless this vcpu previously ran at least
* once and the most recent prior KVM_RUN for this vcpu was called from
* the same task as current (highly likely).
*
* This is guaranteed to execute before kvm_arch_vcpu_load_fp(vcpu),
* such that on entering hyp the relevant parts of current are already
* mapped.
*/
int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu)
{
int ret;
struct user_fpsimd_state *fpsimd = &current->thread.uw.fpsimd_state;
kvm_vcpu_unshare_task_fp(vcpu);
/* Make sure the host task fpsimd state is visible to hyp: */
ret = kvm_share_hyp(fpsimd, fpsimd + 1);
if (ret)
return ret;
/*
* We need to keep current's task_struct pinned until its data has been
* unshared with the hypervisor to make sure it is not re-used by the
* kernel and donated to someone else while already shared -- see
* kvm_vcpu_unshare_task_fp() for the matching put_task_struct().
*/
if (is_protected_kvm_enabled()) {
get_task_struct(current);
vcpu->arch.parent_task = current;
}
return 0;
}
/*
* Prepare vcpu for saving the host's FPSIMD state and loading the guest's.
* The actual loading is done by the FPSIMD access trap taken to hyp.
*
* Here, we just set the correct metadata to indicate that the FPSIMD
* state in the cpu regs (if any) belongs to current on the host.
*/
void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu)
{
BUG_ON(!current->mm);
if (!system_supports_fpsimd())
return;
/*
* Ensure that any host FPSIMD/SVE/SME state is saved and unbound such
* that the host kernel is responsible for restoring this state upon
* return to userspace, and the hyp code doesn't need to save anything.
*
* When the host may use SME, fpsimd_save_and_flush_cpu_state() ensures
* that PSTATE.{SM,ZA} == {0,0}.
*/
fpsimd_save_and_flush_cpu_state();
vcpu->arch.fp_state = FP_STATE_FREE;
}
/*
* Called just before entering the guest once we are no longer preemptable
* and interrupts are disabled. If we have managed to run anything using
* FP while we were preemptible (such as off the back of an interrupt),
* then neither the host nor the guest own the FP hardware (and it was the
* responsibility of the code that used FP to save the existing state).
*/
void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu)
{
if (test_thread_flag(TIF_FOREIGN_FPSTATE))
vcpu->arch.fp_state = FP_STATE_FREE;
}
/*
* Called just after exiting the guest. If the guest FPSIMD state
* was loaded, update the host's context tracking data mark the CPU
* FPSIMD regs as dirty and belonging to vcpu so that they will be
* written back if the kernel clobbers them due to kernel-mode NEON
* before re-entry into the guest.
*/
void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu)
{
enum fp_type fp_type;
WARN_ON_ONCE(!irqs_disabled());
if (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED) {
if (vcpu_has_sve(vcpu))
fp_type = FP_STATE_SVE;
else
fp_type = FP_STATE_FPSIMD;
/*
* Currently we do not support SME guests so SVCR is
* always 0 and we just need a variable to point to.
*/
fpsimd_bind_state_to_cpu(&vcpu->arch.ctxt.fp_regs,
vcpu->arch.sve_state,
vcpu->arch.sve_max_vl,
NULL, 0, &vcpu->arch.svcr,
&vcpu->arch.fp_type, fp_type);
clear_thread_flag(TIF_FOREIGN_FPSTATE);
}
}
/*
* Write back the vcpu FPSIMD regs if they are dirty, and invalidate the
* cpu FPSIMD regs so that they can't be spuriously reused if this vcpu
* disappears and another task or vcpu appears that recycles the same
* struct fpsimd_state.
*/
void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu)
{
unsigned long flags;
local_irq_save(flags);
if (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED) {
/*
* Flush (save and invalidate) the fpsimd/sve state so that if
* the host tries to use fpsimd/sve, it's not using stale data
* from the guest.
*
* Flushing the state sets the TIF_FOREIGN_FPSTATE bit for the
* context unconditionally, in both nVHE and VHE. This allows
* the kernel to restore the fpsimd/sve state, including ZCR_EL1
* when needed.
*/
fpsimd_save_and_flush_cpu_state();
}
local_irq_restore(flags);
}